3.290 \(\int \frac{\cos ^2(c+d x) (a B+b B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=79 \[ \frac{2 a^2 B \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^2 d \sqrt{a-b} \sqrt{a+b}}-\frac{a B x}{b^2}+\frac{B \sin (c+d x)}{b d} \]

[Out]

-((a*B*x)/b^2) + (2*a^2*B*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*b^2*Sqrt[a + b]*d)
+ (B*Sin[c + d*x])/(b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.131642, antiderivative size = 79, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 34, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.176, Rules used = {21, 2746, 12, 2735, 2659, 205} \[ \frac{2 a^2 B \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^2 d \sqrt{a-b} \sqrt{a+b}}-\frac{a B x}{b^2}+\frac{B \sin (c+d x)}{b d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*(a*B + b*B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^2,x]

[Out]

-((a*B*x)/b^2) + (2*a^2*B*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*b^2*Sqrt[a + b]*d)
+ (B*Sin[c + d*x])/(b*d)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2746

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^2/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b^2
*Cos[e + f*x])/(d*f), x] + Dist[1/d, Int[Simp[a^2*d - b*(b*c - 2*a*d)*Sin[e + f*x], x]/(c + d*Sin[e + f*x]), x
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos ^2(c+d x) (a B+b B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx &=B \int \frac{\cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx\\ &=\frac{B \sin (c+d x)}{b d}-\frac{B \int \frac{a \cos (c+d x)}{a+b \cos (c+d x)} \, dx}{b}\\ &=\frac{B \sin (c+d x)}{b d}-\frac{(a B) \int \frac{\cos (c+d x)}{a+b \cos (c+d x)} \, dx}{b}\\ &=-\frac{a B x}{b^2}+\frac{B \sin (c+d x)}{b d}+\frac{\left (a^2 B\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx}{b^2}\\ &=-\frac{a B x}{b^2}+\frac{B \sin (c+d x)}{b d}+\frac{\left (2 a^2 B\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^2 d}\\ &=-\frac{a B x}{b^2}+\frac{2 a^2 B \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{\sqrt{a-b} b^2 \sqrt{a+b} d}+\frac{B \sin (c+d x)}{b d}\\ \end{align*}

Mathematica [A]  time = 0.133713, size = 73, normalized size = 0.92 \[ \frac{B \left (-\frac{2 a^2 \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\sqrt{b^2-a^2}}-a (c+d x)+b \sin (c+d x)\right )}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^2*(a*B + b*B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^2,x]

[Out]

(B*(-(a*(c + d*x)) - (2*a^2*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 + b^2] + b*Sin[c +
 d*x]))/(b^2*d)

________________________________________________________________________________________

Maple [A]  time = 0.135, size = 105, normalized size = 1.3 \begin{align*} 2\,{\frac{B\tan \left ( 1/2\,dx+c/2 \right ) }{bd \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) }}-2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) Ba}{{b}^{2}d}}+2\,{\frac{B{a}^{2}}{{b}^{2}d\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x)

[Out]

2/d/b*B*tan(1/2*d*x+1/2*c)/(1+tan(1/2*d*x+1/2*c)^2)-2/d/b^2*arctan(tan(1/2*d*x+1/2*c))*B*a+2/d*a^2/b^2/((a-b)*
(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*B

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.57561, size = 612, normalized size = 7.75 \begin{align*} \left [-\frac{\sqrt{-a^{2} + b^{2}} B a^{2} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) +{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt{-a^{2} + b^{2}}{\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) + 2 \,{\left (B a^{3} - B a b^{2}\right )} d x - 2 \,{\left (B a^{2} b - B b^{3}\right )} \sin \left (d x + c\right )}{2 \,{\left (a^{2} b^{2} - b^{4}\right )} d}, \frac{\sqrt{a^{2} - b^{2}} B a^{2} \arctan \left (-\frac{a \cos \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) -{\left (B a^{3} - B a b^{2}\right )} d x +{\left (B a^{2} b - B b^{3}\right )} \sin \left (d x + c\right )}{{\left (a^{2} b^{2} - b^{4}\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

[-1/2*(sqrt(-a^2 + b^2)*B*a^2*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 + 2*sqrt(-a^2 + b^2)*(a*c
os(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) + 2*(B*a^3 - B*a
*b^2)*d*x - 2*(B*a^2*b - B*b^3)*sin(d*x + c))/((a^2*b^2 - b^4)*d), (sqrt(a^2 - b^2)*B*a^2*arctan(-(a*cos(d*x +
 c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - (B*a^3 - B*a*b^2)*d*x + (B*a^2*b - B*b^3)*sin(d*x + c))/((a^2*b^2 -
 b^4)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.48652, size = 173, normalized size = 2.19 \begin{align*} \frac{\frac{2 \,{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )} B a^{2}}{\sqrt{a^{2} - b^{2}} b^{2}} - \frac{{\left (d x + c\right )} B a}{b^{2}} + \frac{2 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )} b}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

(2*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))
/sqrt(a^2 - b^2)))*B*a^2/(sqrt(a^2 - b^2)*b^2) - (d*x + c)*B*a/b^2 + 2*B*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x +
1/2*c)^2 + 1)*b))/d